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COMPARISON OF SEVERAL METHODS FOR OBTAINING THE TIME RESPONSE OF LINEAR
SYSTEMS TO EITHER A UNIT IMPULSE OR ARBITRARY INPUT FROM
FREQUENCY-RESPONSE DATA *

By Jamzss J. DonEgaN and CarL R. Huss

SUMMARY

Several methods of obtaining the time response of linear
systems to either a unit impulse or an arbitrary input from
frequency-response data are described and compared.

Comparisons indicate that all the methods give good accuracy
when applied to a second-order system; the main difference is
the required computing time. Several of the methods when
applied to higher order systems require excessive compuling
time in order to obiain the same degree of accuracy. The
methods generally classified as inverse Laplace tramsform
methods were found to be most effective in determining the
response to @ unit impulse from frequency-response daia of
higher order systems.

Some discussion and examples are gwen of the use of the
methods as flight-data-analysis techniques in predicting loads
and motions of a flexible aircraft on the basis of simple calcu-~
lations when the aircraft frequency response is known.

INTRODUCTION

The frequency-response type of analysis used on linear
systems has found extensive application in the field of air-
craft stability and in the determination of overall dynamic
characteristics of an aircraft. In fact the current trend
to perform analysis on flight test data in frequency-response
form appears to be gaining favor especially in the case of
flexible aircraft. Considerable emphasis hag, therefore, been
given to methods of determining the frequency response of
a system from transient responses. A concise résumé and
comparison of methods for obtaining the frequency response
from transient responses are presented in reference 1.

This report briefly considers the next step in the process—
the converting of the information contained in & frequency
response to the time plane in the form of the response to
a unit impulse. For certain purposes this conversion gives
data in more useful form. The response of a linear system
to a unjt impulse may be used in conjunction with Duhamel’s
(superposition) integral to determine (1) the aircraft tran-
gient response to any type of input or (2) the input required
to cause any required aircraft transient response.

It appears that methods of converting frequency-response
data to transient date present a flight-data-analysis tech-
nique which permits the prediction of aircraft motions
and loads for a flexible aircraft without knowledge of the

1 Suparsedes NAOA Technical Nots 3701 by James J. Donegan and Oarl R. Huss, 1956,
460194—58——606

f

equations of motion relating the input and output. These
methods also bypass the need for computing transfer-
function coefficients or stability derivatives in predicting
these loads and motions. Such predictions are important
in anticipating the motions and loads for more hazardous
aircraft maneuvers. These methods are also useful in
predicting time responses of complicated linear systems
whose frequency response is known.

The purpose of this report is to collect and briefly compare
a few of the methods now available for performing this
operation. The methods are compared on the basis of
accuracy, computing time required, and applicability of
the method to higher order systems. Some extensions of
these methods are also given. With such information avail-
able, engineers may then select the met.hod which best
fits their needs

SYMBOLS
F@) function of time
H(io) frequency response of a system
H{(s) transfer function (in terms of Laplace variable &)
relating input and output
L) time response of & system to & unit impulse
T=y—1
7 index of summation
K, K., K; transfer coefficients defined by equation (8)
KL limits on summation of P-transform
M Mach number
m index of summation of P-transform
N total number of data points used in solution of

equatlon 9
n limit of summation
P polynomial transform operator
R real part of frequency response defined by
equation (21)

r .ordinate of pulse used to fit Re [H(iw)]

8 Laplace variable, c+iw

t . time, sec

z output

x(8) Laplace transform of «(t)

z(t) response of a system to an arbitrary input
x

amplitude ratio of frequency response
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A indicates increment

é input

5() time history of input to a linear system

pitching velocity, radians/sec

T dummy time variable of integration, sec

o . phase angle, deg

Dy phase angle between output z and input & of
frequency response; negative phase angles
indicate lag

@ circular frequency, radians/sec

wa damped natural frequency, radians/sec

wy fundamental frequency, radians/sec

wWn undamped natural frequency, radians/sec

Subscripts:

e elevator

1 index of summation indicating row

index of summation indicating column
. A tilde indicates polynomial transform -of function; for
example, F(z) denotes polynomial transform of F(¥).

DESCRIPTION AND DISCUSSION OF METHODS

In this section the methods for détermining the response
to a unit impulse and the methods for obtaining the response
to arbitrary inputs are discussed.

The methods for obtaining the time response to & unit

impulse from frequency-response data fall into several basic
categories which may be generally classified as follows:

(1) Inverse Laplace transform methods :

(2) Fourier method

(3) Other methods
These methods are briefly outlined to indicate the techniques
involved. In order to describe the computations required
and the accuracies obtained, each method is applied to the
frequency-response data of figure 1 which defines a simple
second-order system described by the transfer-function

z 1
It is usually intended that these methods be applied to higher
order systems as will be shown later in the report. No
attempt is made to repeat the development of the methods
since this information may be obtained from the references.

INVERSE LAPLACE TRANSFORM METHODS

Floyd's method.—The method developed by George F.
Floyd and described in detail in reference 2 is referred to as
Floyd’s method. Floyd shows that the inverse Laplace
transform A(f) of H(s) given by the integral

b)) =5 f H(s)e" ds @)

is for all positive values of time equivalent to
“hy=2 | Re ] cos twde @
This operation is based on the assumptions that H(s) may

be written as the ratio of two rational polynomials in s with
real and constant coefficients, that lim H(s)=0, and that
F ]
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Ficure 1.—Frequency response of second-order system.

z . 1
3 () =grero
H{(s) has no poles in the right half of the s-plane or on the
imaginary axis. ‘The procedure for performing the integra-
tion required by equation (3) is to plot Re[H ({w)] against w
and then to approximate the exact shape with a series of
straight-line segments. The straight-line approximation is
written as & sum of trapezoidal functions and equation (3) is
applied to each of the trapezoids; the resulting time functions
due to each trapezoid are then added to obtain A(f).

A simple illustration is shown in sketch A. The time

Re[Hbwl) /// 7 // 4

—Ap ——Ap
< @ Y “
Sketch A.

function associated with a typical trapezoid (as shown by
the cross-hatched section) may be expressed as

e I

wyw,
2

where

W=

__ W Wy

Ap 5

Ag =73Ww3
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In general for » trapezoids the time response is given by

(sm w,t) <SHZ jjt> )

In figure 2 the real part Re [H(iw)] of the simple second-
order system computed from figure 1 is shown plotied
against w. The function A(F) is then easily evaluated since

tables of Bme are given in reference 2. In the upper part of

figure 2, two straight-line fits to the Re [H(iw)] are shown,
one a five-line fit and the other an eleven-line fit. For
clarity, however, only the points and not the connecting
lines of the fit are shown. In the lower part of figure 2 the
resulting responses to a unit impulse computed by Floyd’s
method are compared with the exact response to a unit
impulse. The accuracy of Floyd’s method depends on the
number of lines used to fit the Re [H(w)] and the location
of the cutoff frequency. The cutoff frequency is defined as
the maximum frequency at which the Re [H(iw)] was fitted.
It should be noted that the limits of the definite integral of
equation (3) are 0 to «; however, in the practical case the
Re [H(iw)] is cut off at some finite frequency. This error is
reflected at the low values of time, especially at t=0. For a
given number of lines, the accuracy also depends on the
judicious fit of the lines.

Numerical-integration method.—In order to use automatic
computing machines to perform the inverse Laplace trans-
form method, the necessary operations indicated by equation
(8) are performed in the following manner by using & numer-
ical-integration method. For a given value of time #, the

h(t)—

— Exact
o 5-line fit
o I-line fit

N
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Frequency, w, radians /sec
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Response to a unit impulse, A(/)

Fraure 2.—Time response to a unit impulse obtained from Floyd’s
method compared to the exact values for the second-order system.

product curve Re [H(iw)] cos tw is evaluated over the o
range and integrated by numerical-integration techniques
which give one point on the time history of the response to
& unit impulse. By repeating the above computation for
all the desired values of time, the time response can be
obtained.

This method was applied to the frequency-response data
of figure 1. The accuracy of the method is shown in figure 3.
In the upper part of figure 3 the error due to the interval
Aw chosen for the computation is shown by the comparison
between the circle and square symbols. The accuracy of
the computation for the case of Aw=1.0, as indicated by the
circle symbols, was not satisfactory beyond ¢=2.0 seconds.
This result is to be expected since the interval Aw=1.0 was
too large to permit numerical-integration methods to perform
adequately the integration required by equation (3).

Rectangular-pulse method.—A method for determining
the time response to a unit impulse from frequency-response
data has been given in reference 3 and has been recently
extended in reference 4. It is referred to herein as the
rectangular-pulse method. The metbod involves the use
of tables for time-plane values equivalent to unit rectangular
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Frgure 3.—Time response to a unit impulse obtained from the
numerical-integration method compared to the exact values for the
second-order system.
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pulses of the Re [H(iw)]. The method requires fitting the
Re [H(ww)] with a series of rectangular pulses or a staircase
function so that the area under the curve is equal to the
area of the pulse in each case as is shown in sketch B. This

!
|
]
=
-
|

Sketch B.

fitting although made visually should be made carefully.
If the ordinate of pulse 1 is designated as r;, of pulse 2 as 7y,
and of pulse n as r,,, then the time response to & unit impulse
corresponding to this Re [H(iw)] is given by

h(t)=I_Elrf.h:(t) ()
The time functions A;(f), ha(t), ks(f) associated with each
of the rectangular pulses shown in sketch B are tabulated in
reference 3. These time functions are the inverse Fourier
transforms of unit rectangular pulses of the Re [H (iw)].
The method was applied to the frequency-response data of
figure 1. The fitting of the staircase function to the

Re [H(iw)] is llustrated in the upper part of figure 4 and the

accuracy of the method is demonstrated in the lower part of
figure 4. Again the error in the computed response to the
unit impulse at =0 is due to cutting off the Re [H(iw)] at
w=20 radians/sec and not integrating to « as indicated by
equation (3).

FOURIER METHOD

Fourier response to unit impulse.—In-reference 5, the
response to a unit step input is derived by the Fouriér
method. Differentiating this response gives an expression
by which the response to a unit impulse may be approxi-
mated. For a linear system characterized by its frequency

response with amplitude ratio % and phase angle ¢,s, this
expression is ) )
2 ©
R(t =?wf2 %; cos [@n—Det+ @) an-nal (7)
n=1 (@x—-1) wp

In using equation (7) the choice of the fundamental frequency
wy determines the accuracy and length of the computations.
Since the accuracy is affected by w, it has been found by ex-

perience that a value wF% can be used as a good first esti-

mate, where w, is the undamped natural frequency of the
gystem. Instead of w,, the value of frequency at which the
amplitude ratio peaks for a lightly damped system may be
used. This value may be determined from the frequency
response of the system. ’

In table I the numerical computation of A(f) for the system
defined by the frequency response of figure 1 is shown. In
this computation, 14 terms are carried in the expression for
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rectangular-pulse method compared to the exact values for tho
second-order system.

k(), and more accuracy may be obtained, of course, by carry-
ing more terms. The accuracy of the method is shown in
figure 5 by the comparison between the computed and exact
response to the unit impulse.

OTHER METHODS

Schumacher’s method.—The method of reference 6 per-
mits the computation of transfer-function coefficients by
assuming the shape of the transfer function relating the input
and output and then curve fitting this relation to the air-
craft date in frequency-response form. Once the transfer-
function coefficients are known, the system is completely
specified since the response to a unit impulse input or any
other arbitrary input may then be computed by the normal
methods available for solving differential equations. To
illustrate the method a sample computation is performed by
using the system defined in figure 1. The differential equa-
tion relating input & and output z for the frequency response
shown in figure 1 is

DPy+ K Dx+EKp=Kb (8)

By applying the vector least-squares method of reference 6,
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TABLE I

NUMERICAL CALCULATION ILLUSTRATING
COMPUTATION OF THE FUNCTION FOR THE
RESPONSE TO A UNIT IMPULSE BY THE
FOURIER METHOD

[omdoemoos]
T

n 2n—1 2n—1)ewy IS-I ¢, deg
1 1 0. 64 0. 0970 —22
2 3 1. 92 . 0760 T —81
3 5 3.20 . 0620 —91
4 7 4.48 . . 0350 —111
5 9 5. 76 . 0240 —124
6 11 7.04 . 0170 —133
7 13 8 32 . 0130 —140
8 15 9. 60 . 0100 —145
9 17 10. 88 . 0079 —149
10 19 12.16 . 0064 —152
11 21 13. 44 . 0053 —155
12 23 14. 72 . 0044 —157
13 26 16. 00 . 0038 —159
14 27 17. 28 . 0033 —160

h()="2210.007 cos (0.64—22)+0.076 cos (1.92t—61)+

0.052 cos (3.2t—91)4-0.035 cos (4.48:—111)+
0.024 cos (5.76t—124) 40.017 cos (7.04¢—133) -}

0.013 cos (8.32t—140) +0.010 cos (9.6:—145)+
0.0079 cos (10.88{—149) 4-0.0064 cos (12.16t—152)+
0.0053 cos (13.44¢t—155)-0.0044 cos (14.72t—157) +
0.0038 cos (16t—159)+-0.0033 cos (17.28t—160)]

the following set of simultaneous equations is ohtained:

N +Besy —Sdy|[E] (—Eea)

z\? ’
3 ): 0 K =+ 0 >

A

+§1<wB,>, ji; ©

[%) [*M 2 [~ x 2
—2e o BEDIE (B
©
where
Az=l%| 08 ¢.3
and
-B== 3 sin ¢z&

These equations are then solved simultaneously for the
transfer coefficients K;, K;, and K,. From the form of
equation (8), it is seen that the response to a unit impulse
input is given by the equation

B(t) =B g2t gin ot (10)

wWg
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where
K 2
o=y K-
and
_K
@3

A sample computation is shown in table II. Table IE
demonstrates the computational steps involved in solving
for the transfer coefficients K, K,, and Kj for the system

15
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= Exact
Q. / o Fourier method
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0 2 4 .6 .8 .0 1.2 1.4 .6 1.8 20
Time, /, sec

Figure 5.—Time response to a unit impulse obtained from the
Fourier method compared to the exact values for the second-order
system.

TABLE II

NUMERICAL CALCULATIONS ILLUSTRATING
SCHUMACHER’S METHOD

w, x &3, =% =[%| &t
radians/sec la ' deg 4s 3] °08 ¢ | B, |6| SIR a3
0 0. 1000 0 0. 10000 =0
1 . 0024 —33.7 . 07687 —. 05127
2 . 0745 —63.'4 . 03336 ~—. 06661
3 . 0556 —86.8 . 00310 —. 05541
4 .0404 | —104. 0 —. 00977 —. 03920
5 .0298 | —116. 6 —. 01334 —. 02665
[§] .0225 | —125.8 —. 01316 —. 01825
7 .0174 | —132.9 | —.01184 —. 01275
8 .0139 | —1388 4 —. 01039 —. 00923
9.0 —0. 91336 —0. 15483 K, 1. 97049
—0. 91336 0. 15220 0 K r=<0
—0. 15483 0 0. 03069 K, 0. 156220
K,y=1. 0002
K,=6. 0023
EK,=10. 0053
wg=0. 992
. a=3. 0011
k() =1. 0010e-3.0011¢ gin (O, 999¢
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defined in figure 1. These transfer coefficients are then sub-
stituted into equation (10), and a plot of this function is
compared with the exact response of the system to a unit
impulse input in figure 6.

This method gave additional information when applied to
the second-order system since the transfer-function coeffi-
cients were determined in the process of the computation.
A reasonable amount of computing time was required, and
good accuracy was obtained. The method, however,
requires previous knowledge of the form of the transform
function relating the input and output. Use of the curve-
fitting method on the higher order system did not prove too
effective in determining all the parameters of the flexible
system. If the form of the transfer function of the short
period is assumed and fitted to that portion of the aircraft
frequency response associated with the short period then the
method is very effective in determining the short-period
transfer-function coefficients.

The P-transform method.—The P-transform method, as
described in appendix A, differs from the other methods
presented in this report in that the time response to & unit
impulse can be determined directly from a known response
to a known arbitrary input. The computation is carried out
entirely in the time domain, bypassing the frequency plane
entirely, and does not require knowledge of the transfer
function relating the input and output. The method also
represents & simple procedure for using the response to a
unit impulse and determining the response to a given
arbitrary input.

An example of the method is shown in figure 7 in which
the assumed input &(f) and output z() are given from which
the response to  the unit impulse A(f) is computed. A
comparison of the computed response to a unit impulse and
the exact response to & unit impulse is shown in the lower
part of figure 7.

The z-transform method.—The z-transform method as
described in appendix A, when applied to the continuous
linear systems, is very similar to the P-transform method.
In fact, for a given time interval, the z-transform gives the
same results as the P-transform for these systems. The
computation obtained by using the z-transform is so similar

15
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Fiaure 6.—Time response to a unit impulse obtained from Schu-
msacher’s method compared to the exact values for the second-order
system.
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to that obtained by. using the P-transform that it is not
repeated herein.

RESPONSE TO ARBITRARY INPUTS

The procedure for obtaining the response to arbitrary
inputs when the response to the unit impulse is known is
simply a matter of applying Duhamel’s integral to the
response to the unit impulse and time history of the arbitrary
input. A numerical method of performing this operation is
shown in appendix A of reference 3.

The response to a unit step input may be obtained by
numerically integrating the response to a unit impulse by
using the integrating matrix given in reference 3. In like
manner, the response to & ramp input may be obtained by
numerically integrating the response to a step function.
The response to a triangular input is obtained by super-
position of the responses to various ramp inputs translated
along the time scale. .

The response to an arbitrary input may be obtained from
the response to a unit impulse by the P-transform method
by use of equation (A4) of the appendix.
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For directly determining the time response to an aribtrary
input from frequency-response data, the Fourier method is
perhaps the best known. The general method is indicated
in references 7 and 8. In general, an input which can be
expressed as a Fourier series can be represented as

3)=Aart 33 O, (S0 nyt+ ) (1

The response to the input given by equation (11) of a linear

system whose amplitude ratio is ‘g—‘ and phase angle i8 ¢z
can be written as ,

2(()=Birt 3} Cr, |3

_sin[nattoe @] (02

For o few specific shapes of inputs the values of By, Cy. , and

¢$no, Of equation (12) are known. Two wave forms fre-
quently used are the square wave and triangular wave and
examples of these are given.

Response to a square wave.—As indicated in reference 5
the Fourier series for a unit square-wave input §(!) may be
written as ~
B(l) =32 3 g sin @n—Dayt

5t 21 4

ﬂ:-

(13)

and the response to this unit step input of a linear system
of which the amplitude ratio is
¢ 18 given by

8 (2;—1)»
( ) _Ho-:-o Wﬂﬂl

2n—1

6 and the phase angle is

sin [(2n— 1)wft+ (®z8)2n—1 o)
(14)

The accuracy of the computation depends on the choice of
the optimum fundamental square-wave frequency o, and, as
before, o suitable value is usually w,——g" where o, is the
lowest undamped natural frequency of the system.

Response to a tna,ngular wave input.—The specific form
of the input used in determmmg the time response to a
triangular-wave input is shown in sketch C where 77 is the

(1)
}
< > 7
\\\ ,// T, Jl
S. ,,/ R
N /2
Sketch C.

total period of the input, 7, is the length of the bage in
geconds, and 8 is the maximum value of the input.

Without giving the analytical development, representation
of the Fourier series for this triangular-wave input is given by

d(O=0m-s sin [(@n—Dettdpd] (1)
where

-1—, radians/sec (16)

a,-FW [1— cos @n—1)r (%)] an
ban_y=180 [1 (2n—1)< )]

The response to this triangular-wave input of a linear system

and

(18)

of which the amplitude is |§l and the phase angle is ¢.; is then

:c(t)=g§02._1

sin [(2n—1)wt-+

2—1) &,

z
é @
ban-1 o, (Ps8)@n-no] (19)

Here again a’'suitable first approximation is w,-——-—% w,

For a higher order system such as a linear system with
several structural modes (as indicated by peaks in the
amplituderatio curve), the choice of a fundamental fre-
quency w; becomes difficult inasmuch as odd multiples of
w; must give the natyral frequency w, and the frequency of
each of the higher structural modes.

If an input is nonperiodic and cannot be expanded into a
Fourier series directly, the Fourier transform of the input is
used. The tables of reference 3 may be used to determine
numerically the Fourier transform of an arbitrary input.
The procedure for computing the response of a linear system
to such an arbitrary input is briefly described as follows.
The Fourier transform of the output is formed by multiplying
the Fourier transform of the arbitrary input by the fre-
quency response of the system, which is the ratio of the
Fourier transforms of the output and input. The invarse
Fourier transform of this product is then taken which is the
time response of the system to the arbitrary input. The
tables of reference 3 may also be used to perform the opera-
tion of the inverse Fourier transform.

COMPARISON AND USE OF METHODS
COMPARISON OF METHODS

A comparison of the methods as applied to the second-
order system, defined by the frequency response shown in
figure 1, may be made by noting the differences between the
exact response to & unit impulse and the response computed
by each of the methods shown in figures 2 to 7. From these

~figures there appears to be little difference between the
accuracy of any one method over the others, and in each
case greater accuracy may be obtained at the cost of more
computation. For the comparisons shown, however, the
computing time required by the rectangular-pulse method
was significantly less than the time required by the other
methods. The Fourier response to a unit impulse required
the most time. A listing of the methods in the order of the
computing time reqmred for the comparisons shown in
figures 2 to 7 is given as follows:

Rectangular pulse (refs. 3 and 4)

Schumacher’s (ref. 6)

Floyd’s (ref. 2)

Numerical integration

Fourier reponse to a unit impulse
(All computations were performed on a desk-type computer.)
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A more severe test of the methods occurs when they are
applied to linear systems of higher order. In order to
demonstrate an application of this type, & further com-
parison of the methods was made by applying them to the
system defined by the transfer function

z ® 1 100 225
) 8?4-68+10 824-0.48-}-100 82-}-0.284-225

20)

The frequency response of this system is shown in figure 8.
The real part of the frequency response shown in figure 9
was computed from figure 8- by using the relation

@1

Re{ i) = 2] cos 6

In figure 10 & comparison of the response to & unit impulse
computed by four of the methods is shown. For Floyd’s
method a 27-line fit to the Re[H(iw)] shown in figure 9
was used. For the rectangular-pulse method, the staircase
fit to the Re[H(iw)] was made with the interval Aw=1

o

\

:

Phase angle, ¢,p, deg

:

P
3

o

(&

Amplitude ratio, |-§-|

[\
—

I\
IRNENZ2NE

L \\_// \

] 4 8 12 16 20
Freguency, w, radians/sec

F1GURE 8.—Frequency response of higher order system.

Z (o) 1 100 225
3 §F65+10 6*+0.45+ 100 51 0.2s1-225

~
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‘Frgure 10.—Time response to & unit impulse obtained by four methods
compared to the exact values for the higher order system.

radian/sec, and for the numerical-integration method, an
interval Aw==0.5 radian/sec was used. The response of
the linear system defined by equation (20) to a triangular
input shown in figure 7 of reference 3 was used to compute
the points shown in figure 10 for the P-transform method.
A time interval of At=0.1 second was used. The Fourier
response to a unit-impulse method was found to be im-
practical in this case because of the large amount of com-
putation required to obtain any accuracy. The accuracies
of each of the four methods illustrated ‘appear to be
equivalent.

USE OF THE RESPONSE TO A UNIT IMPULSE AS A FLIGHT-DATA-ANALYSIS
. TECHNIQUE

As & further comparison of the methods applied to a higher
order system, a typical longitudinal meneuver (3=0.82)
for a flexible swept-wing airplane has been analyzed. In
this case the output was the pitching-velocity response
6 at the center of gravity of the airplane and the input was
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the elevator angle 8, The analysis of this maneuver serves
to demonstrate the use of the method of obtaining the time
response of linear systems to a unit impulse from frequency-
response data as a flight-data-analysis technique. The
Fourier integrals of the output 6 and input 3, were evaluated
by using automatic computing equipment and the methods
of integration of product curves were used. The frequency
response obtained by dividing the Fourier integral of the
output by the Fourier integral of the input is shown in

figure 11. The Re I:ai (iw):l computed from the frequency

response of figure 11 is shown in figure 12. In figure 13 a
comparison of the response to a unit impulse computed by
three of the methods is shown. For Floyd’s method a

‘37-Iine fit to the Re 5£ (iw)]showninﬁgure 12 was used and

hi(t) was computed at enough values of time to define -

adequately its shape. For the rectangular-pulse method,

the staircase fib to the Re aﬁ (iw)] was made with the interval .

Aw=1 radian/sec and, for the numerical-integration method,
an interval of Aw=0.56 radian/sec was used. In the case
of the numerical method, points are shown in figure 13 only
at time intervals of 0.1 second in order to compare accuracies.
Several attempts were ‘made to compute the response to

o
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Fraure 11,—A typical frequency response obtained fromlflight date
of a flexible airplane at M=0.82.
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Figure 12.—Real part of the typical frequency raponsé obtained from

flight data of a flexible airplane at M=0.82.
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Fiegure 13.—Time response to a unit impulse obtained by three
methods for the typical frequency response obtained from flight
data of & flexible airplane at M=0.82.

the unit impulse by the P-transform method using the
original elevator input &,(f) and output 4(f) shown in figure
14. The computations were made at time intervals ranging
from 0.02 second <Af=0.1 second but did not yield satis-
factory accuracy. It appears that this inaccuracy is
primarily due to the sensitivity of the method to small errors
in the first few terms of the response or input.

Time histories of the original elevator input 3, and pitching-
velocity response § are shown in figure 14. The elevator
input &, has also been used as a forcing function with the
response to & unit impulse shown in figure 13 to compute a
time history of 4. The Duhamel method outlined in
appendix A of reference 3 with a time interval of 0.05 second
was used for these calculations. A comparison of this
computed § response with the original 6 response from a
flight test is shown.in the lower part of figure 14. This
comparison shows the amount of error involved in the total
computation procedure (transferring the data in time-
history form to frequency-response form, then to the response
to & unit impulse, and finally to the response to an arbitrary
input by means of Duhamel’s integral).
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Fraure 14.—Comparison with the actual flight record of the calculated
pitching-velocity response using the same input-output data as was
used to obtain the typical frequency response of the flexible airplane
at Af=0.82.

Another flight-test maneuver at 3/=0.80 was selected
_with the other conditions approximately the same as the
previous data in order to see how well the response to a unit
impulse computed from one maneuver could be used to
predict the time response to an arbitrary input from a
different meneuver. The time histories of this maneuver
are shown in figure 15.” Also shown in the lower part of
figure 15 is the §(f) response calculated by application of
Duhamel’s integral to the response to a unit impulse given
in figure 13, aud the elevator motion for the maneuver is
shown in the upper part of figure 15. A comparison of the
computed and measured 6 response in the lower part of
figure 15 gives some indication of how well the motions of
an aircraft can be predicted by a detailed analysis of a
single maneuver.

CONCLUDING REMARKS

Several methods were compared for obtaining the time
response of linear systems to either a unit impulse or arbitrary
input from frequency-response date. The methods were
compared on the basis of accuracy, computing time required,
and applicability to higher order linear systems.

The application of each of the methods to a simple second-
order system indicated little difference between the accuracy
of one method over the others, and, in general, it would be
expected that greater accuracy could be obtained for each
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Figure 15.—Comparison of the predicted pitching-velocity response
with the actual flight record obtained from the flexible airplane af
M=0.80.

of the methods at the cost of more computing time.

For higher order systems the three methods generally
classified as inverse Laplace transform methods were most
effective. They gave good results for a moderate amount
of computation. Al of these methods are based on the
evaluation of the form of the inverse Laplace transform
equation for positive values of time.

The methods generally classified as Fourier methods gave
good accuracy when applied to the second-order system.
The accuracy of these methods was found to depend on the
choice of a fundamental frequency «,. For simple systems

8 suitable value was found to be w,=%'- where w, is the lowest

natural frequency. For higher order systems the choice of
w, becomes more difficult. The Fourier response to & unit-
impulse method was found to be impractical in the case
of higher order systems because of the large amount of
computation required to obtain accuracy.

Schumacher’s method gave additional information when
applied to the second-order system since the transfoer-
function coefficients were determined in the process of the
computation. This method required a reasonable amount
of computing time and gave good accuracy. The method,
however, requires previous knowledge of the form of the
transfer function relating the input and output. Use of the
method on higher order systems did not prove too effective
in determining all the parameters of the flexible system. A
valuable use of the method was found in fitting the known
short-period transfer function to only the short-period por-
tion of the flexible-system frequency response to determine
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the short-period transfer coefficients.

The P-transform method is different from the other
methods presented in that the time response to & unit
impulse can be determined directly from & known response
to a kmown arbitrary input. The computation is carried out
entirely in the time domain and bypasses the frequency
plane entirely. The method also represents a simple proce-
dure for using the response to & unit impulse and determining
the response to a given arbitrary input. The method,
however, when applied to the flight data of this report did
not yield satisfactory accuracy. It appears this is primarily
due to the sensitivity of the method to errors in the first few
terms of the response or input.

For all the examples computed in this report the rectan-

gular-pulse method of NACA Technical Note 3598 required
less computing time, for the same degree of accuracy, than
any of the other methods used to obtain the time response
to a unit impulse from frequency-response data.

When an aircraft frequency response is known, it appears
that these methods may be used as a flight-data-analysis
technique which permits prediction of aircraft motions and
loads without knowledge of the equations of motion relating

_the inputs and outputs for a flexible aircraft.

LANGLEY AERONAUTICAL LABORATORY,
NarioNan Apvisory COMMITTEE FOR AERONAUTICS,
Lanerey Fiewp, Va., March 16, 1956.

APPENDIX A

P-TRANSFORM AND z-TRANSFORM METHODS

THE P-TRANSFORM METHOD

Recently & new general operational calculus has been
introduced, the elements of which were given by Tustin in
reference 9, and the mathematics was formalized by Bubb in
reference 10. In this calculus, which appears well adapted to
the numorical analysis and synthesis of linear systems, a
polynomial transform or P-transform of a function F(f) is
defined by the equation

PIF)]=F(2)
= :>£‘_,KF(m Af)z™

ma—

=S\ F(m At)z™

m=0

(A1)

where F(m Atf) is the ordinate of F(¢) at an integral multiple
of o time interval Af. It may be noted that equafion (A1)
may be obtained from the Laplace transform by setting
t=m At and z=¢*4 roplacing the integral sign by a summa-

tion sign, and summing over the limits m=0 to m= . The
inverse P-transform is given by
F()=P~[F@)] (42)

The superposition (convolution or Faltung) integral, which
is also known as Duhamel’s integral, relates the input 5(),
output z(f), and response to & unit impulse k() (also called
s memory function) of a linear system and is given by

2(t)—= f_’ma(f)h(t—f)df (A3)

Bubb (ref. 10) shows that the P-transform of equation (A3) is
' #z)=At5 (@) (@) (Ad)

In the synthesis problem the input 3() and the output z(f)
are given and the response to the unit impulse i(t) is to be
calculated. This calculation is performed by forming the
P-transforms of z(z) and &(x) and dividing by ordinary
polynomial division, £(z) by §(z), to get the P-transform of

the response to the unit impulse

_1:@
Ma=5m

L
= 25 hnz"
m=—K -

=2 hnz"

(A5)
0

For practical cases, however, the summation is made over a
finite range of ¢ values. The inverse P-transform to A(z)
then gives h(t), the time response to the unit impulse. An
example of this operation is shown in table ITI; the known
input () and output z(f) are shown in the upper part of
figure 7, and the computed response to the unit impulse is
compared with the analytic solution in the lower part of
figure 7.

This operational calculus is also well adapted to the solu-
tion of the analysis problem in which the.system response
to a unit impulse A(f) and the input function §() are known
and the calculation of the system output z(f) is desired. The
P-transforms- of A(f) and §(f) are formed and multiplied
together by ordinary polynomial multiplication as indicated
in equation (A4). Since this operation is just the inverse of
the operation shown in table ITI, an illustrative example is
not shown. This method has been found to be a simple and
rapid means of applying the Duhamel process.

The value of this operational calculus lies in the fact that
all computations remain in the time domain and no transla-
tion to the frequency plane is required. Also, only simple
direct arithmetical procedures are required for solving
practical problems.

THE z-TRANSFORM METHOD

The z-transformation developed originally for the analysis

" and synthesis of sampled-data systems is also applicable to

numerical solutions of continuous linear systems, as shown
in references 11 and 12. The z-transform is defined by the
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TABLE III
NUMERICAL CALCULATION ILLUSTRATING THE P-TRANSFORM METHOD
5 1 Z(z)
h(z)=— —_—
[ @ Al F(x)
. N Inverse
Time histories P-transforms P-transform
t, sec
5 = Response to & unit Response to a unit
Input; (%) Output, z() Inp}xt, &(2) | Output, Z(z) impulse, 7(z) impulse, A()
0 0 0 0 0 0. 014 0. 014
.1 .1 . 00014 .z . 00014 . 072z . 072
.2 .2 . 00100 . 248 . 00100 . 10622 . 106
.3 .3 . 00292 . 828 . 0029223 . 1193 . 119
.4 ! . 00603 . 4zt . 00603x* o 1172 . 117
.5 .5 . 01031 . 5ab . 0103128 . 106zt . 106
.6 .4 . 01537 . 4z8 . 0153728 . 095x8 . 096
.7 .8 . 01994 . 37 . 0199427 . 07727 . 077
.8 .2 . 02316 . 228 . 0231848 . 06628 . 066
.9 .1 . 02466 .12 . 024662° . 0532° . 053
1.0 0 . 02435 0 . 0243510 . 044z10 . 044
1.1 0 . 02250 0 . 0225021t . 03011 . 030
1.2 0 . 01977 0 . 01977x13 . 025212 . 025
1.3 0 . 01681 0 . 01681z . 021zt . 021
1.4 0 . 01393 0 . 01393zH . 015214 . 016
1.5 0 . 01131 0 . 01131z . 016218 . 016
1.6 0 . 00903 0 . 00903z18 . 006216 . 006
‘1.7 0 . 00716 0 . 00716217 —. 00417 —. 004
1.8 0 - 00552 0 . 0055218 . 012218 . 012
= 1 #(z)
h(z)=— -
@) Al F(z) .
1 /0--0.00014z--0.0010023+0.0029223 -} 0.006032*+0.01031254 . . . 4-0.00652z18 . . .., )
0.1 0+4-0.12-} 0.222}-0.323+0.424} . . . 4-0.12°
l';.(a;) =0.01440.072240.10822+-0.11923+0.117z44 . . . +0.012z18 , .. ..

equation
2[F(O)]=F*(z)

=§;‘0f(nAt)z"“

Comparison of equation (A6) and (A1) indicates the similar-
ity of the two transforms. The z-transformation may be
obtained from the Laplace transformation by setting
t=nAt and z=¢*’, replacing the integral sign by a summa-
tion sign, and summing over the limits =0 to n=c. The

(A6)

numerical computation applying the z-transform to the
continuous systems used in this report is so similar to that
in which the P-transform is used that it is not repeated.

It should be noted that in reference 13 Salzer defines the

symbol z by

z=¢ ¢

This definition makes the z-transform, when applied to
continuous linear systems the same as the P-transform.
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